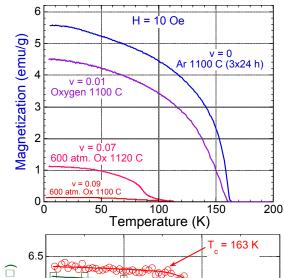
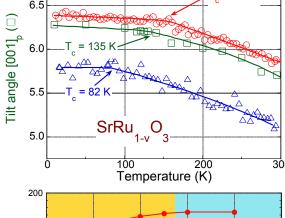
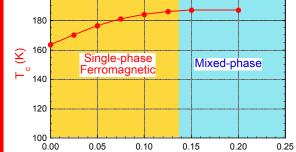
Teaching Old Dog New Tricks: Improving SrRuO₃ for Magneto-Electronic Applications


SrRuO $_3$ has been known for half a century as a strongly-correlated ferromagnetic metal with considerable variance of its magnetic properties and $T_c \sim 160$ K. It is also important for application as an electrode material in micro- and nano-electronic circuits. We have discovered that the Ru-site vacancies can be created in SrRu $_1$ - $_v$ O $_3$ by processing under oxidizing conditions. The creation of vacancies dramatically suppresses T_c to 45 K for v ~ 0.09 . Synthesis under reducing atmosphere produces stoichiometric material and improves resistive and magnetic properties.


Neutron powder diffraction analysis revealed that below T_c the b and c lattice parameters and the unit cell volume are virtually temperature independent. We have discovered that this previously reported invar-effect originates from freezing of the octahedral tilting about the c-axis. Spontaneous magnetostriction has the largest effect on the b axis.


Numerous chemical substitution studies have been performed previously for $SrRuO_3$ resulting in decrease of T_c . We were able for the first time to increase T_c to 187 K by using "design rules" developed earlier in this project. We are currently studying the structural and physical properties of these novel materials and considering application for a U.S. patent, as the markedly improved electronic and magnetic properties of these materials may find wide application in the electronic industry.

Bogdan Dabrowski, DMR-0105398

Substitution amount x for Ru (%)